Your browser doesn't support javascript.
節目: 20 | 50 | 100
结果 1 - 7 de 7
过滤器
添加過濾器

年份範圍
1.
medrxiv; 2023.
预印本 在 英语 | medRxiv | ID: ppzbmed-10.1101.2023.06.14.23290814

摘要

Plasma RNAemia, delayed antibody responses and inflammation predict COVID-19 outcomes, but the mechanisms underlying these immunovirological patterns are poorly understood. We profile 782 longitudinal plasma samples from 318 hospitalized COVID-19 patients. Integrated analysis using k-means reveal four patient clusters in a discovery cohort: mechanically ventilated critically-ill cases are subdivided into good prognosis and high-fatality clusters (reproduced in a validation cohort), while non-critical survivors are delineated by high and low antibody responses. Only the high-fatality cluster is enriched for transcriptomic signatures associated with COVID-19 severity, and each cluster has distinct RBD-specific antibody elicitation kinetics. Both critical and non-critical clusters with delayed antibody responses exhibit sustained IFN signatures, which negatively correlate with contemporaneous RBD-specific IgG levels and absolute SARS-CoV-2-specific B and CD4+ T cell frequencies. These data suggest that the Interferon paradox previously described in murine LCMV models is operative in COVID-19, with excessive IFN signaling delaying development of adaptive virus-specific immunity.


主题 s
COVID-19 , Inflammation
2.
medrxiv; 2022.
预印本 在 英语 | medRxiv | ID: ppzbmed-10.1101.2022.05.27.22275708

摘要

Multiple clinical phenotypes have been proposed for COVID-19, but few have stemmed from data-driven methods. We aimed to identify distinct phenotypes in patients admitted with COVID-19 using cluster analysis, and compare their respective characteristics and clinical outcomes. We analyzed the data from 547 patients hospitalized with COVID-19 in a Canadian academic hospital from January 1, 2020, to January 30, 2021. We compared four clustering algorithms: K-means, PAM (partition around medoids), divisive and agglomerative hierarchical clustering. We used imaging data and 34 clinical variables collected within the first 24 hours of admission to train our algorithm. We then conducted survival analysis to compare clinical outcomes across phenotypes and trained a classification and regression tree (CART) to facilitate phenotype interpretation and phenotype assignment. We identified three clinical phenotypes, with 61 patients (17%) in Cluster 1, 221 patients (40%) in Cluster 2 and 235 (43%) in Cluster 3. Cluster 2 and Cluster 3 were both characterized by a low-risk respiratory and inflammatory profile, but differed in terms of demographics. Compared with Cluster 3, Cluster 2 comprised older patients with more comorbidities. Cluster 1 represented the group with the most severe clinical presentation, as inferred by the highest rate of hypoxemia and the highest radiological burden. Mortality, mechanical ventilation and ICU admission risk were all significantly different across phenotypes. We conducted a phenotypic analysis of adult inpatients with COVID-19 and identified three distinct phenotypes associated with different clinical outcomes. Further research is needed to determine how to properly incorporate those phenotypes in the management of patients with COVID-19.


主题 s
COVID-19 , Hypoxia
3.
medrxiv; 2021.
预印本 在 英语 | medRxiv | ID: ppzbmed-10.1101.2021.10.04.21264015

摘要

Predicting COVID-19 severity is difficult, and the biological pathways involved are not fully understood. To approach this problem, we measured 4,701 circulating human protein abundances in two independent cohorts totaling 986 individuals. We then trained prediction models including protein abundances and clinical risk factors to predict adverse COVID-19 outcomes in 417 subjects and tested these models in a separate cohort of 569 individuals. For severe COVID-19, a baseline model including age and sex provided an area under the receiver operator curve (AUC) of 65% in the test cohort. Selecting 92 proteins from the 4,701 unique protein abundances improved the AUC to 88% in the training cohort, which remained relatively stable in the testing cohort at 86%, suggesting good generalizability. Proteins selected from different adverse COVID-19 outcomes were enriched for cytokine and cytokine receptors, but more than half of the enriched pathways were not immune-related. Taken together, these findings suggest that circulating proteins measured at early stages of disease progression are reasonably accurate predictors of adverse COVID-19 outcomes. Further research is needed to understand how to incorporate protein measurement into clinical care.


主题 s
COVID-19
4.
biorxiv; 2021.
预印本 在 英语 | bioRxiv | ID: ppzbmed-10.1101.2021.08.13.456258

摘要

IntroductionCOVID-19 vaccine efficacy has been evaluated in large clinical trials and in real-world situation. Although they have proven to be very effective in the general population, little is known about their efficacy in immunocompromised patients. HIV-infected individuals response to vaccine may vary according to the type of vaccine and their level of immunosuppression. We evaluated immunogenicity of an mRNA anti-SARS CoV-2 vaccine in HIV-positive individuals. MethodsHIV-positive individuals (n=121) were recruited from HIV clinics in Montreal and stratified according to their CD4 counts. A control group of 20 health care workers naive to SARS CoV-2 was used. The participants Anti-RBD IgG responses were measured by ELISA at baseline and 3 to 4 weeks after receiving the first dose of an mRNA vaccine). ResultsEleven of 121 participants had anti-COVID-19 antibodies at baseline, and a further 4 had incomplete data for the analysis. Mean anti-RBD IgG responses were similar between between the HIV negative control group (n=20) and the combined HIV+ group (n=106) (p = 0.72). However, these responses were significantly lower in the group with <250 CD4 cells/mm3. (p<0.0001). Increasing age was independently associated with decreased immunogenicity. ConclusionHIV-positive individuals with CD4 counts over 250 cells/mm3 have an anti-RBD IgG response similar to the general population. However, HIV-positive individuals with the lowest CD4 counts (<250 cells/mm3) have a weaker response. These data would support the hypothesis that a booster dose might be needed in this subgroup of HIV-positive individuals, depending on their response to the second dose.


主题 s
COVID-19 , HIV Infections
5.
medrxiv; 2021.
预印本 在 英语 | medRxiv | ID: ppzbmed-10.1101.2021.03.18.21253907

摘要

Despite advances in COVID-19 management, it is unclear how to recognize patients who evolve towards death. This would allow for better risk stratification and targeting for early interventions. However, the explosive increase in correlates of COVID-19 severity complicates biomarker prioritisation. To identify early biological predictors of mortality, we performed an immunovirological assessment (SARS-CoV-2 viral RNA, cytokines and tissue injury markers, antibody responses) on plasma samples collected from 144 hospitalised COVID-19 patients 11 days after symptom onset and used to test models predicting mortality within 60 days of symptom onset. In the discovery cohort (n=61, 13 fatalities), high SARS-CoV-2 vRNA, low RBD-specific IgG levels, low SARS-CoV-2-specific antibody-dependent cellular cytotoxicity, and elevated levels of several cytokines and lung injury markers were strongly associated with increased mortality in the entire cohort and the subgroup on mechanical ventilation. Model selection revealed that a three-variable model of vRNA, age and sex was very robust at identifying patients who will succumb to COVID-19 (AUC=0.86, adjusted HR for log-transformed vRNA=3.5; 95% CI: 2.0-6.0). This model remained robust in an independent validation cohort (n=83, AUC=0.85). Quantification of plasma SARS-CoV-2 RNA can help understand the heterogeneity of disease trajectories and identify patients who may benefit from new therapies.


主题 s
Lung Diseases , Drug-Related Side Effects and Adverse Reactions , Death , COVID-19
6.
medrxiv; 2020.
预印本 在 英语 | medRxiv | ID: ppzbmed-10.1101.2020.12.21.20248642

摘要

Dysregulated immune profiles have been described in symptomatic SARS-CoV-2-infected patients. Whether the reported immune alterations are specific to SARS-CoV-2 infection or also triggered by other acute illnesses remains unclear. We performed flow cytometry analysis on fresh peripheral blood from a consecutive cohort of i) patients hospitalized with acute SARS-CoV-2 infection; ii) patients of comparable age/sex hospitalized for other acute disease (SARS-CoV-2 negative); and iii) healthy controls. Using both data-driven and hypothesis-driven analyses, we found several dysregulations in immune cell subsets (e.g. decreased proportion of T cells) that are similarly associated with acute SARS-CoV-2 infection and non-COVID-19 related acute illnesses. In contrast, we identified specific differences in myeloid and lymphocyte subsets that are associated with SARS-CoV-2 status (e.g. elevated proportion of ICAM-1+ mature/activated neutrophils, ALCAM+ monocytes, and CD38+CD8+ T cells). A subset of SARS-CoV-2-specific immune alterations correlated with disease severity, disease outcome at 30 days and mortality. Our data provides novel understanding of the immune dysregulation that are specifically associated with SARS-CoV-2 infection among acute care hospitalized patients. Our study lays the foundation for the development of specific biomarkers to stratify SARS-CoV-2+ patients at risk of unfavorable outcome and uncover novel candidate molecules to investigate from a therapeutic perspective.


主题 s
COVID-19
7.
medrxiv; 2020.
预印本 在 英语 | medRxiv | ID: ppzbmed-10.1101.2020.10.13.20212092

摘要

Proteins detectable in peripheral blood may influence COVID-19 susceptibility or severity. However, understanding which circulating proteins are etiologically involved is difficult because their levels may be influenced by COVID-19 itself and also subject to confounding factors. To identify circulating proteins influencing COVID-19 susceptibility and severity we undertook a large-scale two-sample Mendelian randomization (MR) study, since this study design can rapidly scan hundreds of circulating proteins and reduces bias due to confounding and reverse causation. We began by identifying the genetic determinants of 955 circulating proteins in up to 10,708 SARS-CoV-2 uninfected individuals, retaining only single nucleotide polymorphisms near the gene encoded by the circulating protein. We then undertook an MR study to estimate the effect of these proteins on COVID-19 susceptibility and severity using the Host Genetics Initiative. We found that a standard deviation increase in OAS1 levels was associated with reduced COVID-19 death or ventilation (N = 2,972 cases / 284,472 controls; OR = 0.48, P = 7x10-8), COVID-19 hospitalization (N = 6,492 / 1,012,809; OR = 0.60, P = 2x10-7) and COVID-19 susceptibility (N = 17,607 / 1,345,334; OR = 0.81, P = 6x10-5). Results were consistent despite multiple sensitivity analyses probing MR assumptions. OAS1 is an interferon-stimulated gene that promotes viral RNA degradation. Other potentially implicated proteins included IL10RB. Available medicines, such as interferon-beta-1b, increase OAS1 and could be explored for their effect on COVID-19 susceptibility and severity.


主题 s
COVID-19 , Death
搜索明细